Deficiency of inducible nitric oxide synthase attenuates immobilization-induced skeletal muscle atrophy in mice.

نویسندگان

  • Sang-Keun Bae
  • Hey-Na Cha
  • Tae-Jin Ju
  • Yong-Woon Kim
  • Hee Sun Kim
  • Yong-Dae Kim
  • Jin-Myoung Dan
  • Jong-Yeon Kim
  • Se-Dong Kim
  • So-Young Park
چکیده

The present study examined the effects of inducible nitric oxide synthase (iNOS) deficiency on skeletal muscle atrophy in single leg-immobilized iNOS knockout (KO) and wild-type (WT) mice. The left leg was immobilized for 1 wk, and the right leg was used as the control. Muscle weight and contraction-stimulated glucose uptake were reduced by immobilization in WT mice, which was accompanied with increased iNOS expression in skeletal muscle. Deficiency of iNOS attenuated muscle weight loss and the reduction in contraction-stimulated glucose uptake by immobilization. Phosphorylation of Akt, mTOR, and p70S6K was reduced to a similar extent by immobilization in both WT and iNOS KO mice. Immobilization decreased FoxO1 phosphorylation and increased mRNA and protein levels of MuRF1 and atrogin-1 in WT mice, which were attenuated in iNOS KO mice. Aconitase and superoxide dismutase activities were reduced by immobilization in WT mice, and deficiency of iNOS normalized these enzyme activities. Increased nitrotyrosine and carbonylated protein levels by immobilization in WT mice were reversed in iNOS KO mice. Phosphorylation of ERK and p38 was increased by immobilization in WT mice, which was reduced in iNOS KO mice. Immobilization-induced muscle atrophy was also attenuated by an iNOS-specific inhibitor N(6)-(1-iminoethyl)-l-lysine, and this finding was accompanied by increased FoxO1 phosphorylation and reduced MuRF1 and atrogin-1 levels. These results suggest that deficiency of iNOS attenuates immobilization-induced skeletal muscle atrophy through reduced oxidative stress, and iNOS-induced oxidative stress may be required for immobilization-induced skeletal muscle atrophy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deficiency of inducible nitric oxide synthase attenuates 2 immobilization - induced skeletal muscle atrophy in mice 3 4

4 Sang-Keun Bae, Hey-Na Cha, Tae-Jin Ju, Yong-Woon Kim , Hee Sun Kim, 5 Yong-Dae Kim, Jin-Myoung Dan, Jong-Yeon Kim, Se-dong Kim, So-Young 6 Park 7 8 Department of Orthopedic Surgery, Department of Physiology, Aging-associated Vascular 9 Disease Research Center, Department of Microbiology, Department of 10 Otorhinolaryngology, College of Medicine, Yeungnam University, Daegu, Korea, Department 1...

متن کامل

Citrulline does not prevent skeletal muscle wasting or weakness in limb-casted mice.

BACKGROUND Increasing arginine (Arg) availability reduces atrophy in cultured skeletal muscle cells. Supplementation with its metabolic precursor citrulline (Cit) is more effective at improving skeletal muscle Arg concentrations. OBJECTIVE We tested the hypothesis that Cit supplementation would attenuate skeletal muscle atrophy and loss of function during hindlimb immobilization in mice. ME...

متن کامل

α-Terpineol attenuates morphine-induced physical dependence and tolerance in mice: role of nitric oxide

Objective(s):Dependence and tolerance to opioid analgesics are major problems limiting their clinical application. a-Terpineol is a monoterpenoid alcohol with neuroprotective effects which is found in several medicinal plants such as Myrtus communis, Laurus nobilis, and Stachys byzantina. It has been shown that some of these medicinal plants such as S. byzantina attenuate dependence and toleran...

متن کامل

Comparison of inducible nitric oxide synthase activity in pancreatic islets of young and aged rats

Objective(s):Some pathologic situations such as diabetes and metabolic syndrome are associated with alternation in nitric oxide level. Incidence of these condition increases with aging. On the other hand, insulin secretion is modulated by nitric oxide, and nitric oxide synthase (NOS) activity is also altered in diabetes. In this study, modification in the enzyme activity associated with aging a...

متن کامل

C-Reactive Protein Causes Insulin Resistance in Mice Through Fcg Receptor IIB–Mediated Inhibition of Skeletal Muscle Glucose Delivery

Elevations in C-reactive protein (CRP) are associated with an increased risk of insulin resistance. Whether CRP plays a causal role is unknown. Here we show that CRP transgenic mice and wild-type mice administered recombinant CRP are insulin resistant. Mice lacking the inhibitory Fcg receptor IIB (FcgRIIB) are protected from CRP-induced insulin resistance, and immunohistochemistry reveals that ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of applied physiology

دوره 113 1  شماره 

صفحات  -

تاریخ انتشار 2012